

EXAMINATIONS COUNCIL OF ESWATINI Eswatini General Certificate of Secondary Education

CANDIDATE NAME						_																
CENTRE NUMBER															NDID/ MBEF							
PHYSICAL SCI Paper 1 Short A																C	ctob	er/i	Nove		er :	8/01 2019 hour
Candidates ans					aper.																	
READ THESE	NSTR	UCTI	ONS	FIRS	Γ																	
Write your Cent Write in dark blu You may use ar Do not use star Do not write in Answer all ques You may use ar You may lose m	ue or blander bles, parany bastions.	lack pencil faper of rcode	oen. for an clips, f es.	y diag nighlig ator.	grams ghters	s, s,	grap glue	aphs, ue or	, tab	oles rect	or i	roug flui	gh w d.	vorki	ng.				ss.			
A copy of the Pe									end c	of ea	ach	ı qu	esti	on o	r part	que	stion.					
																	For	Exa	amir	ner'	s U	se
																					_	

This document consists of 12 printed pages and 4 blank pages.

© ECESWA 2019 [Turn over

[1]

1 Which quantity is measured using a spring balance?

Circle the letter with the correct answer.

- **A** density
- **B** distance
- **C** energy
- **D** weight

2 Amino acids are colourless and can be separated by the method shown in Fig. 2.1.

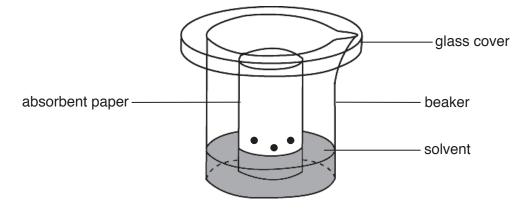


Fig. 2.1

(a) Name the method shown in Fig. 2.1.

.....[1]

(b) State the additional substance needed to identify the colourless amino acids.

.....[1]

3	Δ	car	moves a	a distance	of 100	metres	in 3	seconds

Calculate the average speed of the car.

m/s [2						m/s	[2
--------	--	--	--	--	--	-----	----

4 Hydrogen burns in air to form water.

Explain why the burning of hydrogen is a chemical change.

5 Fig. 5.1 shows the speed-time graph of a heavy box falling from an aeroplane.

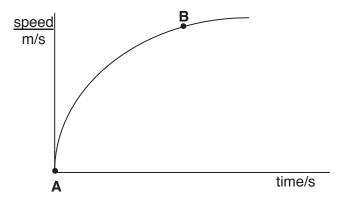


Fig. 5.1

Describe the motion of the box between A and B.

6 Answer the questions using the letters A, B, C or D.

You may use each letter once, more than once or not at all.

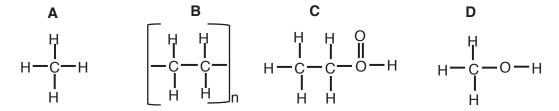


Fig. 6.1

Which of these organic compounds

- (a) is in the same homologous series as hexane.....
- (b) form an ester
- **7** Fig.7.1 shows a three pin plug with the pins facing you.

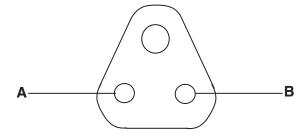


Fig. 7.1

Name the parts labelled **A** and **B**.

Α	

8	Explain, using the kinetic particle theory of matter, why a liquid can flow but a solid cannot.

.....[2

9	State one use	of gamma radiation.												
				[1]										
10	Table 10.1 sho	ws some air pollutants and th	eir sources.											
	Table 10.1													
		chlorofluorocarbons	aerosol sprays											
		Α	car exhausts											
		carbon monoxide	В											
	Name one pol	lutant A and one source B in	Table 10.1.	•										
	pollutant A													

11 Fig. 11.1 shows a student holding a pendulum bob against his nose.

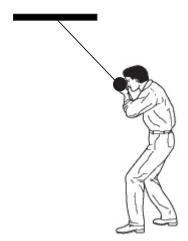


Fig. 11.1

He releases the pendulum bob to swing freely away and back to his nose and does not change his position.

	Explain, in terms of energy changes, why the pendulum bob will not hit his nose.
	[2]
12	Brass is an alloy that contains 70% copper and 30% zinc.
	Explain why brass is stronger than copper or zinc.
	[2]

13 Fig. 13.1 shows a ray of light incident to a glass block at an angle of 60°.

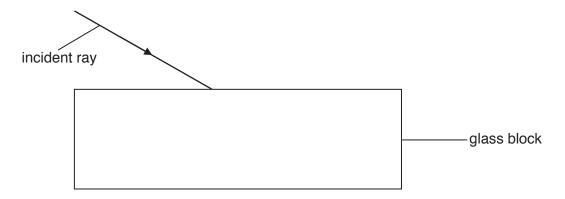
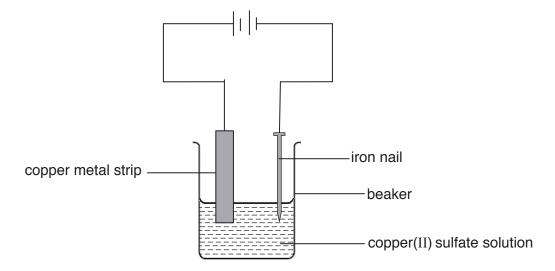



Fig. 13.1

- (a) Draw and label the angle of incidence, on Fig. 13.1. [1]
- (b) The angle of refraction is 35.3°.Calculate the refractive index of the glass block.

.....[2]

14 Fig. 14.1 shows apparatus used to electroplate an iron nail with copper metal.

	Fig. 14.1	
(a)	Name the cathode in Fig. 14.1.	
		[1]
(b)	The reaction that occurs at one of the electrodes is represented by the following equation:	
	Cu — Cu ²⁺ + 2e−	
	Explain oxidation using this equation.	
		[2]

15 Lunga carries a uniform log on his shoulder.

He adjusts the log such that it balances horizontally on his shoulder as shown in Fig. 15.1.

		Fig. 15.1
	(a)	Explain why the log balances on his shoulder.
		[1]
	(b)	The mass of the log is 30 kg.
		Calculate its weight.
		[g = 10 N/kg]
		[2]
16	Cho	ose from the list below, to match the given description.
		appround alament ion
		compound element ion mixture atom
	_	
		h word may be used once, more than once or not at all.
		gest a substance that
	(a)	is a unit of matter,
	(b)	has a non-zero electrical charge,
	(c)	is made from elements chemically bonded together.
		[3]

© ECESWA 2019 6888/01/O/N/2019

17 Fig. 17.1 shows a bar magnet.

Fig. 17.1

	Complete Fig. 17.1 by drawing magnetic field lines around the bar magnet.	[2]
18	Some parts of the exhaust system of a car are made from galvanised steel.	
	Describe how galvanising prevents steel from rusting.	
		. [2]

19 Fig. 19.1 shows vernier callipers used to measure the length of a cuboid.

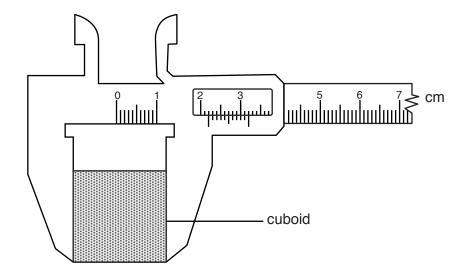


Fig. 19.1

Determine the length of the cuboid.

																							_	١,	r	r		Γ	2	1	
		•	•	•	•	•	•	•	•	•	•	•	•	•			•	•	•	•	•	•	L	,		I	I	L	_	·J	

The Periodic Table of the Elements DATA SHEET

						1	2				
	Key		* 58–7: † 90–1	223 Fr Francium 87	133 Cs Caesium	Rb Rb Rubidium	39 X Potassium	7 Lithium 3 23 Na Sodium		_	
Ь	×	a	1 Lantha 03 Actin	226 Ra Radium 88	137 Ba Barium 56	88 Strontium	40 Ca Calcium	Bee Beryllium 4 24 Mg Magnesium	_	=	
b = atomic (proton) number	X = atomic symbol	a = relative atomic mass	* 58–71 Lanthanoid series † 90–103 Actinoid series	227 AC Actinium +	139 La Lanthanum *	89 Yttrium	45 Sc n Scandium 21	ш — п			
n) number	<u>o</u>	c mass			178 Ha fnium 72	91 Zr Zirconium 40	48 Ti Titanium				
Thorium 90	Th	232	140 Ce Cerium 58		181 Ta Tantalum 73	93 Nb Niobium	51 Vanadium				
Protactinium 91	Pa	231	141 Pr Praseodymium 59		184 W Tungsten	96 Mo Molybdenum	52 Cr Chromium 24				
Uranium 92	C	238	Neodymium 60		186 Re Rhenium	Tc Technetium	Mn Manganese				
Neptunium 93	Np	237	147 Pm Promethium 61		190 OS Osmium	101 Ru Ruthenium	56 To		1 Hydrogen		
Plutonium 94	Pu	244	150 Sm Samarium 62		192 Ir Ir	103 Rh Rhodium	59 Co Cobalt				ଦ୍ର
Americium 95	Am	243	152 Eu Europium 63		195 Pt Platinum	106 Pd Palladium	59 Ni Nickel				Group
96	Cm	247	157 Gd Gadolinium 64		197 Au Gold	108 Ag Silver	64 Cu Copper				
Berkelium 97	Вĸ	247	159 Tb Terbium 65		201 Hg Mercury	112 Cd Cadmium	65 Zn Zinc				
Californium 98	ਪੁ	251	163 Dy Dysprosium 66		204 T/ Thallium	115 In Indium	70 Ga Gallium	11 Boron 5 Aluminium 13		≡	
Einsteinium 99	Es	252	165 Ho Holmium 67		207 Pb Lead	119 Sn Tin	73 Ge Germanium	12 Carbon 6 Carbon 9 Silicon 14		<	
Fermium 100	Fm	257	167 Er bium 68		209 B: Bismuth	122 Sb Antimony	75 As Arsenic	Nitrogen 7 Nitrogen 7 Phosphorus 15		<	
Mendelevium 101	Md	258	169 Tm Thullum 69		209 Po Polonium 84	Tellurium 52	79 Se Selenium	16 Oxygen 8 Oxygen 8 Sulfur		≤	
Nobelium 102	N _O	259	173 Yb Ytterbium		210 At Astatine	127 I lodine	80 Br Bromine	Fluorine 9 35.5 Q/		≦	
Lawrencium 103	Ļ	260	175 Lu Lutetium 71		222 Rn Radon	131 Xe Xenon 54	84 Xr Krypton	20 Neon 10 Neon 18 Argon	4 He lium	0	
019				ı		6888/01/0	O/N/2019	1			

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (ECESWA) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

© ECESWA 2019 6888/01/O/N/2019